Mild traumatic brain injury and chronic arterial hypertension synergize to promote persistent mitochondrial oxidative stress in cerebral arteries
EANS Academy. Czigler A. 09/25/19; 275345; EP05004
Dr. András Czigler
Dr. András Czigler

Access to this content is reserved for EANS members and attendees of this event. Click here to become an EANS member and gain your access to the full content of the EANS Academy

Discussion Forum (0)
Rate & Comment (0)
Traumatic brain injury (TBI) induces cerebrovascular oxidative stress, which is associated with neurovascular uncoupling, autoregulatory dysfunction and persisting cognitive decline in both preclinical models and patients. However, single mild TBI, the most frequent form of brain trauma increases cerebral generation of reactive oxygen species (ROS) only transiently. We hypothesized, that co-morbid conditions may exacerbate long term ROS generation in cerebral arteries after mTBI. Since hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive and spontaneously hypertensive rats (SHR) and assessed changes in cytoplasmic and mitochondrial superoxide (O2-) production by confocal microscopy in isolated middle cerebral arteries (MCA) two weeks after mTBI using dihydroethidine (DHE) and the mitochondria-targeted redox sensitive fluorescent indicator dye MitoSox. We found that mTBI induced a significant increase in long term cytoplasmic and mitochondrial O2- production in MCAs of SHRs, which was reversed to the normal level by treating the animals with the cell-permeable, mitochondria-targeted antioxidant peptide SS-31(5.7 mg kg-1 day-1 , i.p.). We propose, that hypertension- and mTBI-induced cerebrovascular oxidative stress likely lead to dysregulation of CBF and cognitive dysfunction, which might be reversed by SS-31 treatment.
Code of conduct/disclaimer available in General Terms & Conditions
Anonymous User Privacy Preferences

Strictly Necessary Cookies (Always Active)

MULTILEARNING platforms and tools hereinafter referred as “MLG SOFTWARE” are provided to you as pure educational platforms/services requiring cookies to operate. In the case of the MLG SOFTWARE, cookies are essential for the Platform to function properly for the provision of education. If these cookies are disabled, a large subset of the functionality provided by the Platform will either be unavailable or cease to work as expected. The MLG SOFTWARE do not capture non-essential activities such as menu items and listings you click on or pages viewed.

Performance Cookies

Performance cookies are used to analyse how visitors use a website in order to provide a better user experience.

Google Analytics is used for user behavior tracking/reporting. Google Analytics works in parallel and independently from MLG’s features. Google Analytics relies on cookies and these cookies can be used by Google to track users across different platforms/services.

Save Settings